

OSAMAT – Oil Shale Ash Use in Road Construction

Arina Koroljova Eesti Energia AS Estonia

Project is financed with the contribution of the LIFE financial instrument of the European Community

OSAMAT Project Goals

- OSA is a valuable construction material
- OSA utilisation is safe for the environment

Oil Shale Ash

- Is a product of combustion of oil shale under t=1400 °C (pulverized firing) and t= 900 °C (circulated fluidized bed combustion)
 Is a product of combustion of oil shale under t=1400 °C (circulated fluidized bed OSA A ELECTRIC FILTER ASH I FIELD UD BURNING
- Calcareous

Type of	Boiler type, firing	Specific	CaO	CaO	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	MgO	SO3	K ₂ O	Na ₂ O
USA	temperature	kg/m ²		11ee, %							
CYCL PF	Pulverised firing, up to 1400 °C	86-150	56	18-24	22,1	11,9	4,9	4,0	1,5	1,5	0,1
BF PF	Pulverised firing, up to 1400 °C	280-320	39	6-14	25,7	6,7	3,9	4,7	7,3	3,7	0,1
EF CFB	Circulated fluidised bed combustion, firing temperature up to 900 °C	450-800	28	1,6-8	38,6	5,8	5,1	4,5	4,1	4,5	0,2

Pilot construction (1)

• Narva-Mustajõe layer stabilisation

- Pilot section length 1630 m
- 3 types of OSA used

Pilot construction (2)

- Simuna-Vaiatu mass-stabilisation
 - Section length 500 m, depth 4 m, stabilised peat volume - 10 800 m³

Narva-Mustajõe design criteria and observation results

• Load bearing capacity – 260 MPa

Narva-Mustajõe design criteria and observation results

• Compressive strength development

Construction	Age of		Depth,	Sample	Height,	28 d UCS,
period	structure	Location	m	diameter, mm	mm	MPa
Autumn- 2011	1 year	0+72	0.09-0.19	93	104	9,4
Autumn- 2011	1 year	3+83	0.13-0.23	93	102	8,5
Autumn- 2011	1 year	5+50	0.08-0.18	93	103	2,1
Autumn- 2011	1 year	8+23	0.1-0.2	93	105	2,0
Autumn- 2012	1 month	9+70	0.08-0.18	93	98	4,5

Narva-Mustajõe design criteria and observation results

- Pavement condition analysis
 - Cracks emergence in the sections 2011, no cracks in the section 2012
- Leachibility

Simuna-Vaiatu design criteria and observation results

• Settlement observation (0.857 cm in average)

	Plate 1 (PK 33+10)	Plate 2 (PK 34+10)	Plate 3 (PK 35+10)	Plate 4(PK 36+10)	Plate 5 (PK 37+10)
Height when	99,449	99,584	99,620	99,476	99,374
installed	(25.07.2013)	(19.08.2013)	(25.09.2013)	(30.08.2013)	(23.09.2013)
Height after	98,385	98,817	98,865	98,732	98,558
cutting the pole	(27.09.2013)	(12.09.2013)	(27.09.2013)	(27.09.2013)	(27.09.2013)
Height 08.01.2014 Height 27.06.14	98,36 98,355	98,793 98,775	98,865 98,86	98,685 98,698	98,52 98,535

observation results

Vane shear strength – 50 kPa

Outcomes so far...

- High load bearing capacity
- High strength development
- Lower ash content in the mixture
- No environmental impact
- Mass-stabilised body settlement takes half a year
- Further technical and environmental monitoring is required

Thank you!

Arina Koroljova Project Manager Ash Sales Department Eesti Energia AS +372 71 67 095 +372 5373 2277 Skype arina.koroljova arina.koroljova@energia.ee <u>www.energia.ee</u>

