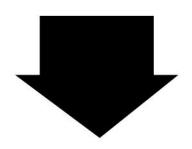
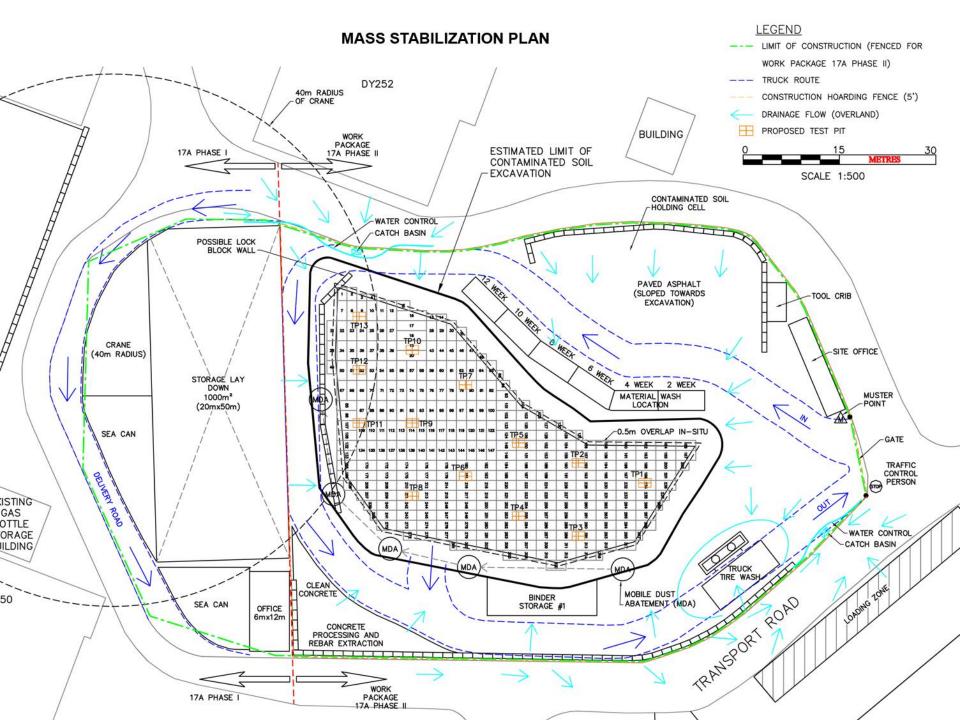


CONSTRUCTION & ENVIRONMENTAL



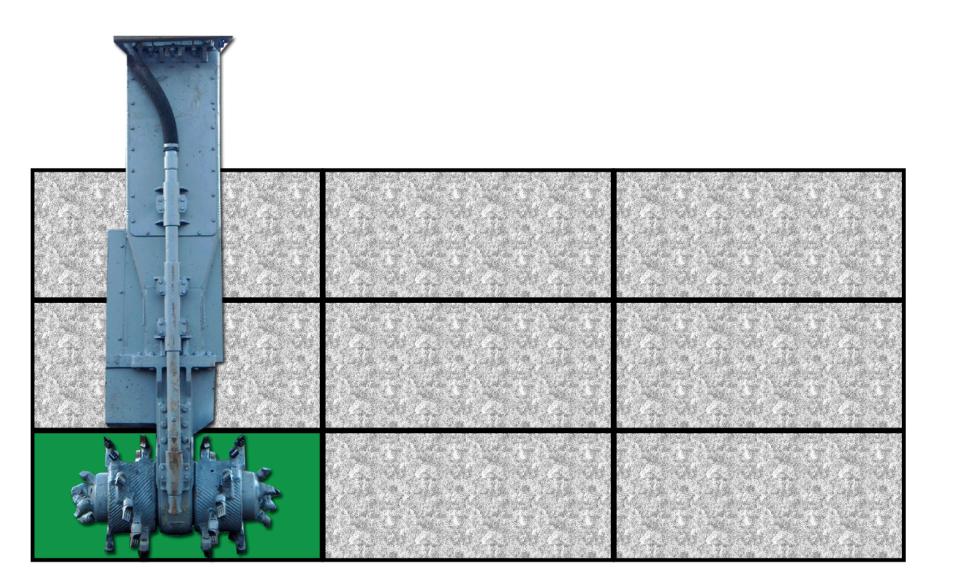
INFILLED COVE

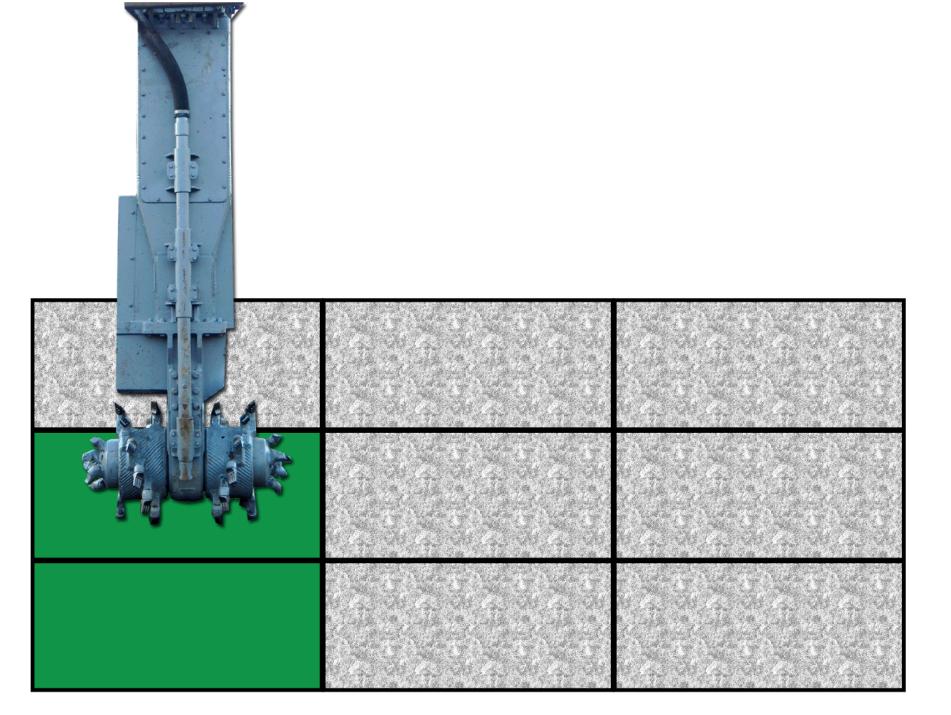
BLASTING BEDROCK SCRAP METAL SHIPYARD WASTE WELDING SLAG

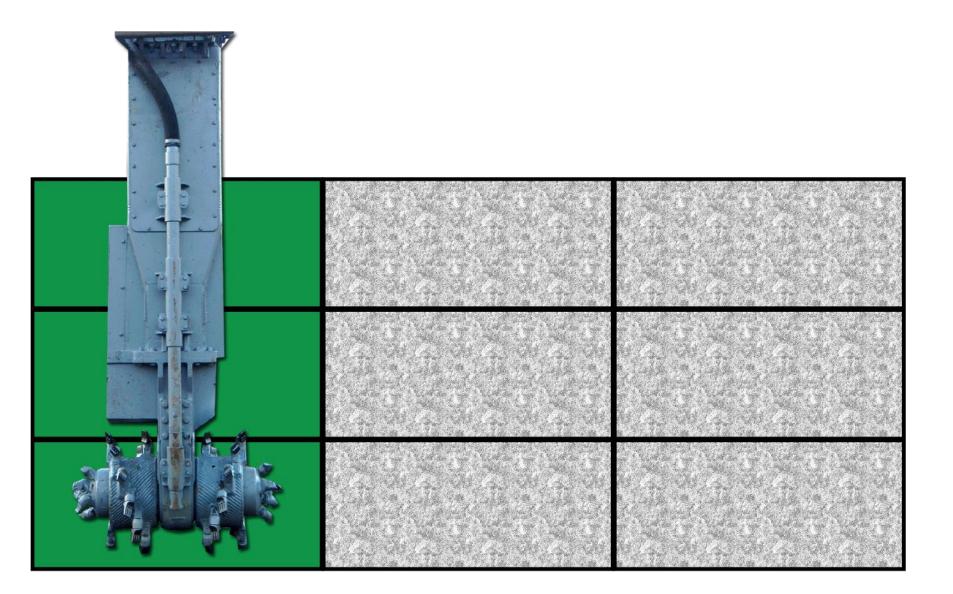

ENVIRONMENTAL

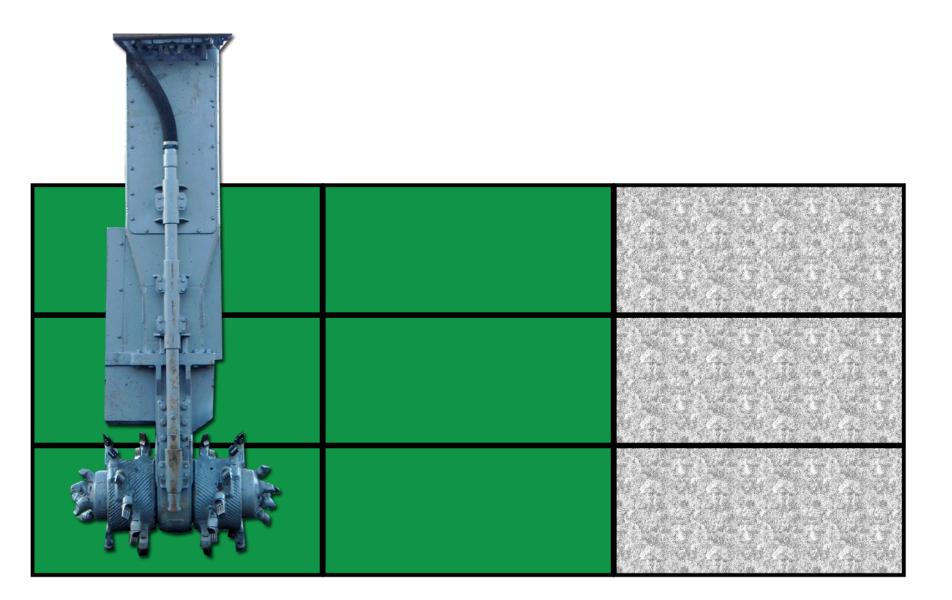
LEACHABLE METALS
HYDRO CARBONS
PCBS

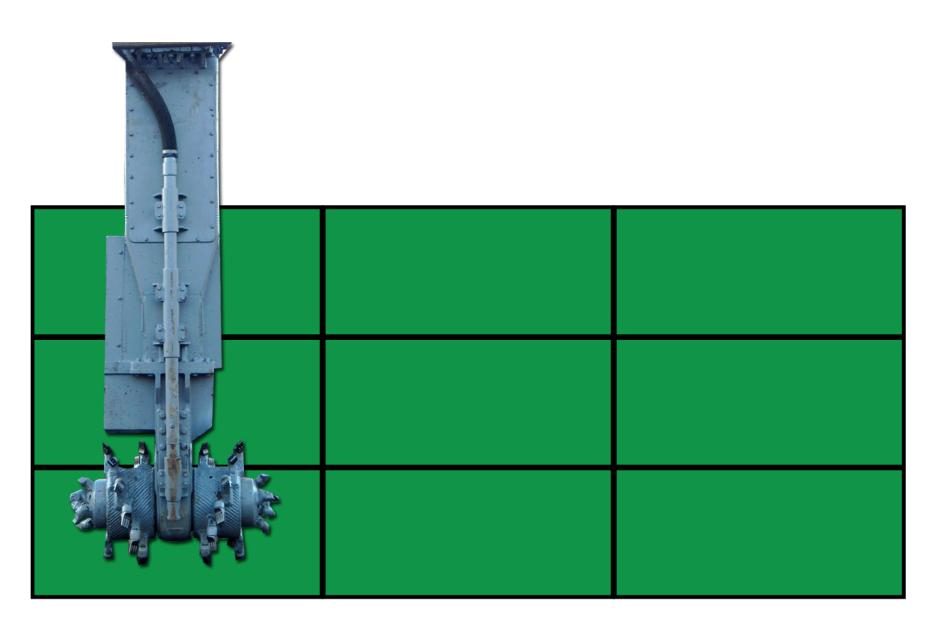
GEOTECHNICAL


SOFT SOIL









RYZUK GEOTECHNICAL

ENGINEERING & MATERIALS TESTING

28 Crease Avenue Victoria, B.C. V8Z 1S3 Tel: 250-475-3131 Fax: 250-475-3611 mail@ryzuk.com Sample

Identification

17A-C052-0.5

17A-C052-0.5

17A-C052-1.5

17A-C052-1.5

17A-C052-2.5

17A-C052-2.5

17A-C057-0.5

17A-C057-0.5

Average

Diameter

(mm)

101.0

101.0

101.0

100.5

100.0

100.0

100.0

100.5

Length

(mm)

203.0

203.0

203.0

203.0

203.0

203.0

203.0

203.0

Load (N)

12076

11996

14052

15156

9080

9288

7232

8040

Corrected

1509

1498

1754

1911

1155

1183 921

1015

Area (mm²) Strength (kPa)

8012

8012

8012

7933

7854

7854

7854

7933

Specimen

Age (Days)

Break Date

22-Jul-14

24-Jul-14

22-Jul-14

24-Jul-14

22-Jul-14

24-Jul-14

22-Jul-14

23-Jul-14

Soilcrete Test Summary Report

Project No.: 8-6134-25

Project: In-Situ Soil Mixing - WP17A, CFB Esquimalt

Client: Allterra Construction
Contact: Mr. Derek Killburn

		Contact:	Mr. Derek K	illburn					17A-C057-1.5	22-Jul-1	4 6	100.0	203.0	9040	7854	1152	
		Email / Fax No.:			tion ca				17A-C057-1.5	23-Jul-1	4 7	100.0	203.0	9204	7854	1173	
			September		tion.ou				17A-C057-2.5	22-Jul-1	4 6	100.5	203.0	6432	7933	812	
		Date.	September	3, 2014					17A-C057-2.5	23-Jul-1	4 7	101.5	203.0	8752	8091	1082	
	Copy to:				Copy to:				17A-C063-0.5	18-Jul-1	4 3	101.0	203.0	16440	8012	2051	
	оору ю.				copy to.				17A-C063-0.5	22-Jul-1	4 7	101.5	203.0	27808	8 8091	3437	
									17A-C063-1.0	18-Jul-1	4 3	101.0	203.0	10564	4 8012	1320	
1			-	Average					17A-C063-1.0	22-Jul-1	4 7	101.5	203.0	17832	2 8091	2205	
	Sample		Specimen	Diameter	Length		82	Corrected	17A-C063-1.5	18-Jul-1	4 3	101.0	203.0	9368	8012	1169	
	Identification	Break Date	Age (Days)	(mm)	(mm)	Load (N)	Area (mm²)	Strength (kPa)	17A-C063-1.5	22-Jul-1	4 7	101.5	203.0		8091	1799	
	17A-C022-1.0	11-Jul-14	3	100.0	203.0	3820	785	174 0063 1 5	17A-C068-0.5 22-Jul-	28-Jul-1	4l 5l 7l 101.	100.0	203.0		7854 8091	105 179	
	17A-C022-1.0	15-Jul-14	7	99.5	203.0	6304	77	17A-C063-1.5	250000000000000000000000000000000000000	20.000	1000			14556	20000000000		
	17A-C022-1.5	11-Jul-14	3	101.5	203.0	3860	803	17A-C068-0.5	28-Jul-	14	5 100.		203.0	760	7854	10	
	17A-C022-1.5	15-Jul-14	7	98.0	203.0	5504	754	17A-C068-0.5	31-Jul-	14	8 99.	0 2	203.0	1680	7698	21	
	17A-C026-0.5	9-Jul-14	5	101.5	203.0	14304	14304 809 17A-C068-0.		20-Aug-	14	28 101.	5 2	203.0	2000	8091	24	
	17A-C026-0.5	16-Jul-14	7	101.0	203.0	24568	801	74 6060 4 0	20.1		- L	م ا	02.0	4550	7054	- 4	
	17A-C026-1.5	9-Jul-14	5	100.0	203.0	16652	7854	2121	17A-C068-2.0	28-Jul-1		100.0	203.0	4160		525	
	17A-C026-1.5	16-Jul-14	7	101.5	203.0	18704	8091	2310	17A-C068-2.0	31-Jul-1		101.0	205.0	3680		455	
	17A-C026-2.5	9-Jul-14	5	100.0	203.0	10112	7854	1288	17A-C068-2.0	20-Aug-1		100.0	203.0	4600		595	
-77	COLUZIO -	10.701.1	7	7	100.0	203.00	10501	7.05-77	17A-C073-05	25-Jul-1		101.5	203.0			364	
17A-	C029-1.0	7-Jul-1	4	3	101.5	203.0	2376	8091	294 —	29-Jul-1		101.5	203.0			630 595	
17A-	C029-1.0	11-Jul-1	4	7	101.5	203.0	4144	8091	511	25-Jul-1 29-Jul-1		101.5 101.5	203.0	4820 11840		1470	
	C020 1 5	7 Jul 1	4	3	101 5	203.0	3940	8001	197	25-Jul-1		101.5	203.0			1180	
-	17A-C029-1.5	11-Jul-14	7	101.5	203.0				17A-C073-2.5	20 1 1 4	4 -	101.5	202.0	13840]*	8091		
	L7A-C035-0.5	18-Jul-14	4	101.0	203.0		001	17A-C073-2.5	29-Jul		7 101.		203.0			1771	
	17A-C035-0.5	22-Jul-14	8		203.0			17A-C080-0.5	23-Jul	10000	5 100.		203.0	1944	7854	24	
- 1	17A-C035-1.5	18-Jul-14	4	101.0	203.0			17A-C080-0.5	25-Jul	-14	7 101.	5 2	203.0	2904	8091	36	
- 0	17A-C035-1.5	22-Jul-14	8	101.0	203.0			17A-C080-0.5	15-Aug	-14	28 100.	0 2	203.0	2640	7854	35	
	17A-C035-2.5	18-Jul-14	4	101.0	203.0	_	_	2220	17A-C080-1.0	25-Jul-1	41 71	101.5	203.0	14984	4 8091	1852	
-	17A-C035-2.5	22-Jul-14	8	101.0	203.0				17A-C080-2.0	23-Jul-1		101.0	203.0	15200		1897	
- 1	17A-C046-0.5 17A-C046-0.5	11-Jul-14 18-Jul-14	7	101.5 101.0	203.0		-		17A-C080-2.0	25-Jul-1		101.5	203.0	18988		2345	
		18-Jul-14 11-Jul-14	3	101.5	203.0				17A-C088-0.5	28-Jul-1	4 3	101.5	203.0	10320	8091	1260	
1		11-101-14	3	101.5	203.0		_		17A-C088-0.5	1-Aug-1	4 7	100.0	203.0	15960	7854	2030	
-	17A-C046-1.5	18.Jul-14	7	101.0	202.0	33060	gn17										
	17A-C046-1.5 17A-C046-1.5	18-Jul-14 11-Jul-14	7	101.0 101.5	203.0				17A-C088-1.5	28-Jul-1		101.5	203.0	11000	8091	1365	

Table 1: Analytical Results for Metals in Soil - WP17A - Solidification & Stabilization Samples

Sample Description				17a-C63-0.5- Day3	17a-C63-1.0- Day3	17a-C63-1.5- Day3	17a-C57-0.5- Day 3	17a-C57-1.5- Day 3	17a-C57-2.5- Day 3	17a-c52-0.5- Day3	17a-c52-1.5- Day3	17a-c52-2.5- Day3	17a-c80-0.5- Day3	17a-c80-1.0- Day3	17a-c80-2.0- Day3	17a-C73-0.5- Day3	17a-C73-1.5- Dav3	17a-C73-2.5- Day3
Corrected Strength (kPa)	CCME (IL) ¹	CSR (IL) ²	SRA ³															
Date Sampled (mm/dd/yyyy)				07/15/2014	07/15/2014	07/15/2014	07/16/2014	07/16/2014	07/16/2014	07/17/2014	07/17/2014	07/17/2014	07/17/2014	07/17/2014	07/17/2014	07/22/2014	07/22/2014	07/22/2014
pH 1:2	6 to 8	-	19	11.6	11.4	11.5	11.5	11.5	11.2	11.5	11.7	11.8	10.9	11.5	11.7	11.9	11.8	11.8
Metals					8					9								
Antimony (Sb)	40	40	20	46.4	31.3	43	47.5	39.8	40.4	30.5	67.1	32.8	36.5	37.9	35.4	32.1	32.8	39.8
Arsenic (As)	12	25	15	30.3	26.3	27.7	21.9	25	17.3	13.7	16.6	14.7	19.4	23.2	20.9	16.6	20.4	19.7
Barium (Ba)	2000	1500	400	446	660	496	662	754	761	521	621	538	857	782	832	650	696	664
Beryllium (Be)	8	8	4	0.4	0.4	0.5	0.4	0.4	0.4	0.3	0.4	0.3	0.5	0.5	0.5	0.3	0.3	0.3
Boron (B) (Hot Water Soluble)			65	1.5	1.3	1.5	1.1	1.1	1.0	1.5	1.4	1.3	2.1	1.5	1.7	1.0	1.0	1.1
Cadmium (Cd) pH < 7.0		2			1/4	0												
pH 7.0 -< 7.5		3.5																
pH 7.5 -< 8.0		35																
pH >= 8.0		200		7.1	6.4	10.4	7.5	22.9	5.9	2.85	3.2	2.9	6.3	5.9	5.3	2.8	3.4	2.9
Chromium (Cd)	87	60	60	103	274	72	70	61	56	47	43	41	54	61	55	44	59	85
Cobalt (Cr)	300	300	50	17.8	15.4	15.0	14.9	15.6	14.8	11.3	12.0	11.1	12.1	13.2	12.9	12.5	12.9	13.3
Copper (Cu) pH < 5.0		90		1		4		Pro-	7									
pH 5.0 -< 5.5	0.4	100	90															
pH 5.5 -< 6.0	pH 5.5 -< 6.0	200	90			.,												
pH >= 6.0		250		1760	93400	1480	1040	1040	926	519	793	1500	1110	1250	950	572	1100	737
Lead (Pb) pH < 5.5		150				2 300000						1000			0.000			
pH 5.5 -<6.0	600	250	100															
pH >= 6.0		2000		1940	1460	1350	1300	1150	734	623	755	627	1350	1240	1200	691	707	867
Mercury (Hg)	50	150	15	4.0	3.2	3.0	1.7	1.9	1.4	1.3	1.6	1.3	5.9	3.3	2.6	1.4	1.7	1.4
Molybdenum (Mo)	40	40	10	14.6	12.4	14	9.0	13	8.1	5.4	6.3	5.5	9.9	10.6	8.5	6.7	7.1	7
Nickel (Ni)	50	500	100	132	206	99.8	79.9	85	64.9	49	51.8	54.1	82.3	93.9	77.5	50.3	60.4	63.6
Selenium (Se)	2.9	10	3	0.5	0.9	0.6	0.7	0.9	0.9	0.4	0.5	0.6	0.6	0.7	0.6	0.4	0.5	0.6
Silver (Ag)	40	40	20	1.0	2.1	1.6	0.6	0.6	0.8	<0.5	0.6	0.9	8.0	1.1	1.1	0.7	0.5	0.5
Thallium (Ti)	1		-	0.1	0.1	0.1	0.1	0.2	0.1	0.1	0.1	0.1	0.2	0.1	0.1	0.2	0.1	0.1
Tin (Sn)	300	300	50	319	203	293	284	177	75.1	79.3	57.2	90.9	135	163	144	53.4	67.1	127
Uranium (U)	300	200	14.	1.5	1.3	1.5	1.4	1.5	1.1	1.2	1.3	1.2	1.3	1.4	1.3	-		
Vanadium (V)	130		200	68.0	55.0	58.0	62.0	58.0	64.0	54.0	55.0	52.0	60.0	56.0	56.0	50.0	53.0	56.0
Zinc (Zn) pH < 6.5		150		1		12		P4	1.			,					9	
pH 6.5 -< 7.0	360	300	150	15	ė.	é.	13				8							
pH >= 7.0		600		3730	2860	3290	2150	2420	1620	1210	1310	1120	2090	2520	2250	1230	1450	1280

Notes:

Associated AGAT Files: 14V864334, 14V865558, 14V865746, 14V867519

All concentrations in mg/kg unless otherwise noted.

- "<" less than the laboratory detection limit indicated.
 "-" means not analyzed or no standard or guideline applies.
- * RPDs are not normally calculated where one or more concentrations are less than five times MDL.
- (1) Canadian Soil Quality Guidelines (CEOG) for the Protection of Environmental and Human Health, Canadian Council of Ministers of the Environment (CCME), 1999, including updates to 2014. Guidelines for <u>Industrial Land Use</u>, Surficial Sois. The exposure pathway(s) used for determining the guidelines for this site include: general, direct contact, eco soil contact, general incl. gw, protection of gw for aquatic life and management limit (whichever is most stringent).
- (2) BC Contaminated Sites Regulation (CSR BC Reg. 375:96 includes amendments up to BC Reg. 97:2011) Generic Numerical Soil Standards (Schedules 4 and 10) and Matrix Numerical Soil Standards (Schedule 5), considering the site specific factors of groundwater flow to surface water used by marine aquatic file, Industrial (IL), Land Use.
- (3) BC Contaminated Sites Regulation (CSR BC Reg. 375/96 includes amendments up to BC Reg. 286/2010) Standards Triggering Contaminated Soil Relocation Agreements (Schedule 7) for Soil Relocation to Non-Agricultural Lands (Column II). If soils exceed these standards, a Soil Relocation Agreement is required to dispose of soils off-Site, without authorization.

BOLD, BLUE SHADING	Concentration greater than CCME Industrial Land Use (IL Standard
BOLD, RED SHADING	Concentration greater than CSR Industrial Land Use (IL) Standard
Underline, Grey Shading	Concentration >CSR SRA Standard.

WP 17A - FMF Cape Breton, Esquimalt, BC

July 2014, AE Project No. 648

Table 2: Analytical Results for Leachable Metals in Soil - WP17A - Solidification & Stabilization Samples

Sample ID	zardous Waste Standards (1)	17a-C63-0.5- Day3	17a-C63-1.0- Day3	17a-C63-1.5- Day3	17a-C57-0.5- Day 3	17a-C57-1.5- Day 3	17a-C57-2.5- Day 3	17a-c52-0.5- Day3	17a-c52-1.5- Day3	17a-c52-2.5- Day3	17a-c80-0.5- Day3	17a-c80-1.0- Day3	17a-c80-2.0- Day3	17a-C73-0.5- Day3	17a-C73-1.5- Day3	17a-C73-2.5- Day3
Corrected Strength (kPa)																
Date Sampled (mm/dd/yyyy)		07/15/2014	07/15/2014	07/15/2014	07/16/2014	07/16/2014	07/16/2014	07/17/2014	07/17/2014	07/17/2014	07/17/2014	07/17/2014	07/17/2014	07/22/2014	07/22/2014	07/22/2014
TCLP Metals (mg/L)												Ĭ				
Antimony (Sb)-Leachable		0.02	0.02	0.02	0.07	< 0.01	0.03	0.05	0.05	0.03	0.11	0.02	0.02	0.01	0.02	< 0.01
Arsenic (As)-Leachable	2.5	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Barium (Ba)-Leachable	100.0	0.49	0.43	0.37	0.31	< 0.05	0.34	0.36	0.52	0.68	0.17	0.67	0.58	0.71	0.60	1.01
Beryllium (Be)-Leachable	-	< 0.02	< 0.02	< 0.02	<0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Boron (B)-Leachable	500.0	< 0.5	< 0.5	<0.5	<0.5	< 0.5	<0.5	< 0.5	<0.5	< 0.5	0.70	<0.5	<0.5	<0.5	< 0.5	<0.5
Cadmium (Cd)-Leachable	0.5	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chromium (Cr)-Leachable	5.0	0.02	0.01	< 0.01	0.02	< 0.01	0.01	0.03	0.01	0.02	< 0.01	0.02	0.02	0.02	0.03	0.02
Cobalt (Co)-Leachable	-0	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Copper (Cu)-Leachable	100.0	0.20	0.14	0.10	0.10	< 0.05	0.11	0.22	0.15	0.19	0.10	0.14	0.16	0.07	0.10	0.08
Iron (Fe)-Leachable	-	2.00	4.00	2.00	<1	<1	<1	5.00	<1	2.00	3.00	<1	1.00	<1	1.00	<1
Lead (Pb)-Leachable	5.0	0.16	0.17	0.06	0.04	< 0.01	0.02	0.16	0.05	0.10	0.11	0.06	0.05	0.03	0.05	0.30
Mercury (Hg)-Leachable	0.1	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Nickel (Ni)-Leachable	-	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Selenium (Se)-Leachable	1.0	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Silver (Ag)-Leachable	5.0	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Thallium (TI)-Leachable		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Uranium (U)	10.0	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Vanadium (V)-Leachable	<u> </u>	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Zinc (Zn)-Leachable	500.0	0.10	0.10	<0.1	<0.1	<0.1	<0.1	0.10	<0.1	0.10	0.10	<0.1	<0.1	<0.1	<0.1	<0.1
Zirconium		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01

Notes:

Associated AGAT Files: 14V864334, 14V865558, 14V865746, 14V867519

All concentrations in mg/L, except pH.

BOLD, MAGENTA SHADING

Concentration greater than Hazardous Waste (HW) Standards

[&]quot;<" less than the laboratory method detection limit (MDL) indicated.

[&]quot;-" means not analyzed or no standard or guideline applies.

⁽¹⁾ BC Hazardous Waste Regulation, Schedule 4, Table 1

CONSTRUCTION & ENVIRONMENTAL