Shallow & Mid depth mixing in Japan

Masaki Kitazume Tokyo Institute of Technology, Japan

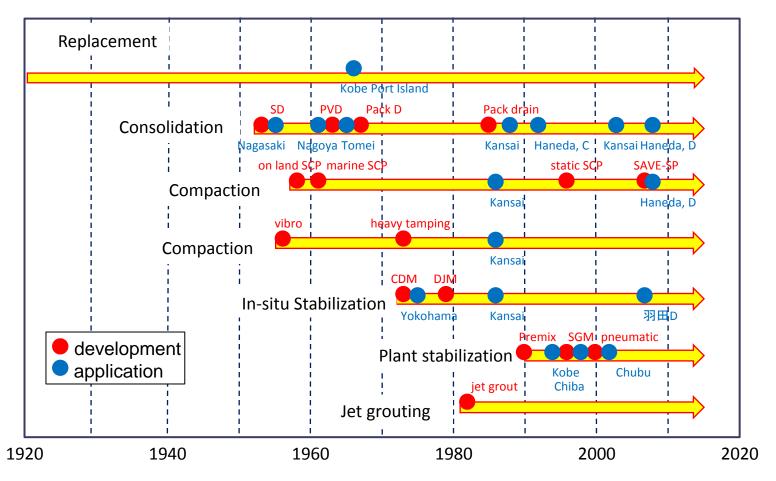
Ground disasters on soft ground

slope failure by earthquake

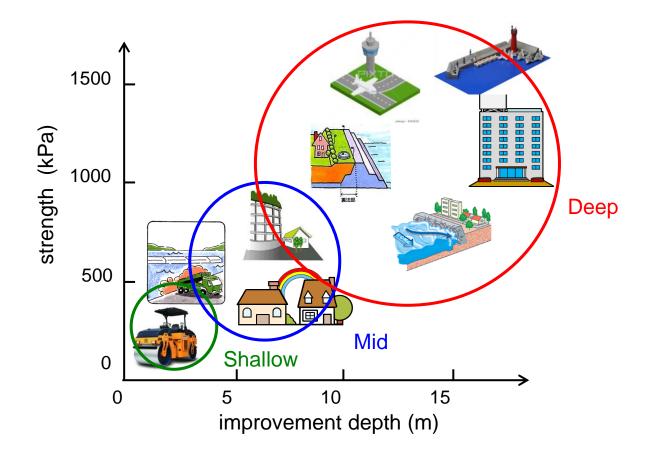
excavation

ground settlement

pile failure

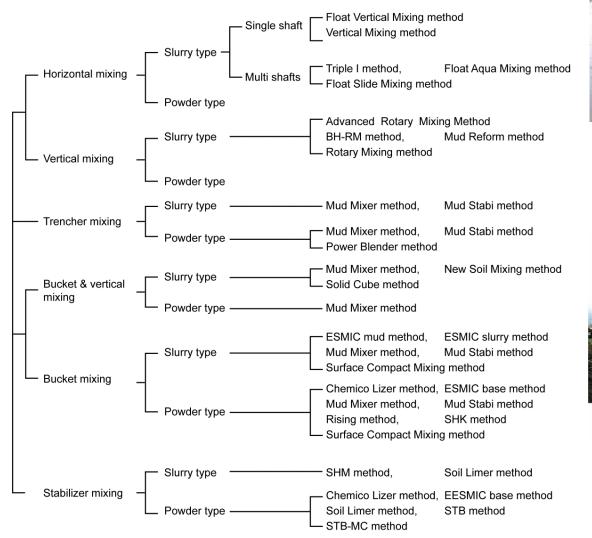


liquefaction in 1964



liquefaction in 1995

Development of ground improvement techniques

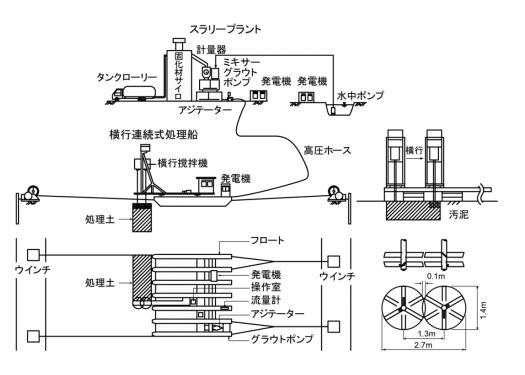

Classification and application

Purpose of shallow depth mixing

Purpose	required strength q _u (kN/m²)	binder factor (kg/m³)	W/C ratio
transporting soft soil	50~100		
improving roadbed		50~100	dry
beneficial use of soft soil	100~300		
barrier for contaminated soil, mitigating stench	100		
assuring stability of structure	200~200		
improving traficability	100~200	100~150	100~130%
others			

Shallow depth mixing

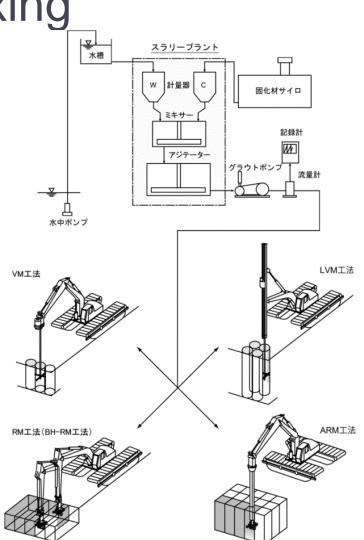
Mass stabilization 2015



April 23, 2015

Floating mixing

design strength : $100 \sim 300 \text{ kN/m}^2$ binder factor : $100 \sim 150 \text{ kg/m}^3$ W/C ratio : $100 \sim 130 \%$ Purpose of improvement: improving traficability surface barrier for contaminated soil mitigating stench



Horizontal & vertical mixing

Purpose of improvement: improving traficability surface barrier for contaminated soil mitigating stench

design strength : $100 \sim 300 \text{ kN/m}^2$ binder factor : $100 \sim 150 \text{ kg/m}^3$ *W/C* ratio : $100 \sim 130 \%$

Stabilizer mixing

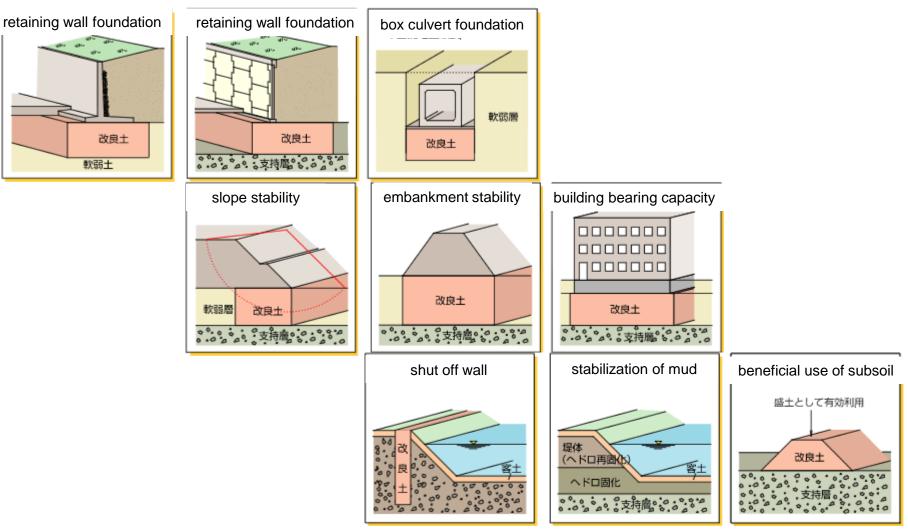
Purpose of improvement: improving roadbed

design strength upper roadbed: q_{u7} = 2.9 MN/m² lower roadbed: 0.98 MN/m² binder factor: 50~100 kg/m³ (dry)

Bucket mixing, bucket & vertical blade mixing

Purpose of improvement: transporting soft soil beneficial use of soft soil surface barrier for contaminated soil improving traficability mitigating stench

improvement depth: 2 m



bucket & vertical blade mixing

Purposes of mid mix improvement

Mass stabilization 2015 April 23, 2015

Mid depth mixing

Horizontal mixing

mixing blade:	0.4 to 1.6 m
depth:	2 to 16 m
slurry:	penetration injection
design strength:	600~1000 kN/m ²
binder factor:	200~350 kg/m ³

quality control

$$T = \Sigma M \left(\frac{Nd}{Vd} + \frac{Nu}{Vu} \right)$$

where

- T : blade rotation number (N/m) > 450 to 650/m
- ΣM : number of mixing blade (3)
- *Nd* : rotation speed during penetration (10 rpm)
- *Vd* : penetration speed (0.5 m/min)
- Nu : rotation speed during withdrawal (30 rpm)
- *Vu* : withdrawal speed (1.0 m/min)

Vertical mixing

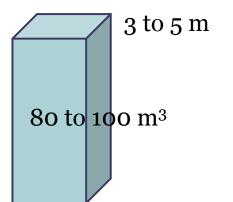
diameter: 1.3 to 1.5 m shape: rectangular solid column

quality control

$$N = \sum M \cdot n \left(\frac{1}{V_u} + \frac{1}{V_d} \right)$$

where

- N : blade rotation number (N/m) >230/m
- ΣM : number of mixing blade (4)
- *n* : rotation speed (rpm)
- Vd : penetration speed (m/min)
- Vu : withdrawal speed (m/min)


Bucket mixing, bucket & vertical blade mixing

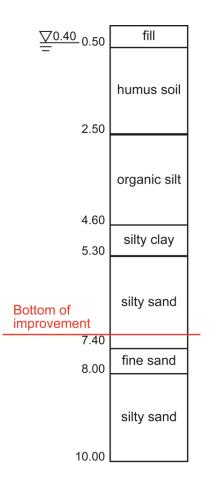
bucket & vertical blade mixing

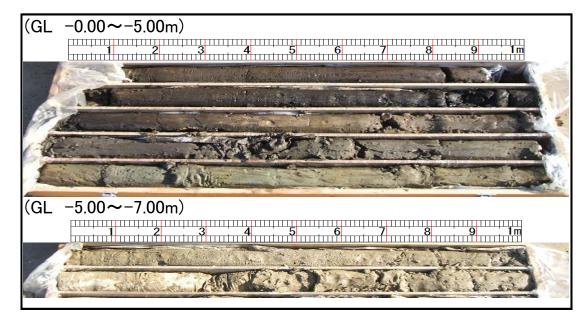
Trencher mixing

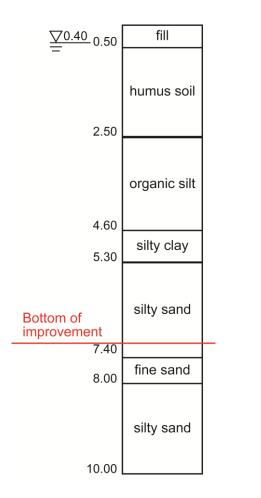
Trencher width	n: ^	1.0 m
<i>W/C</i> :		150 to 200 %
quality control		
R		
$\mathbf{V} = \frac{R}{A \cdot B/W}$		
, , , , ,		
$R = \frac{Dc}{Pm} = \frac{Vc \cdot T}{Pm}$	where	: blade rotation number (N/m ²) >50
Pm Pm	R	: total mixing number (N)
$A = L \cdot H$: improvement area (m ²)
	В	: improvement width (m)
		: width of trencher (m)
	V _c	: speed of chain (m/sec)
		: mixing time (sec)
	•	: total distance of chain movement (r
	r _m I	: pitch of mixing blade (m) : improvement length (m)
	L 	

H : improvement depth (m)

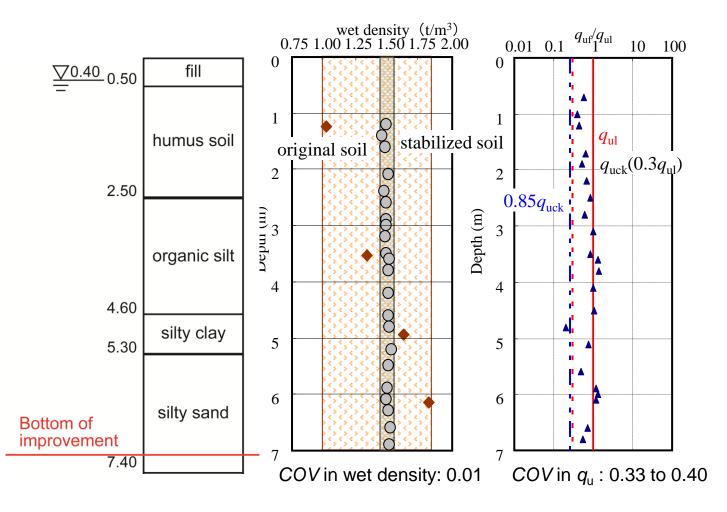
Trencher mixing



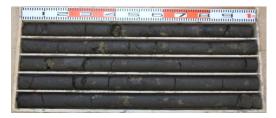



Original soil

Original soil



Core sample of stabilized soil



Properties of stabilized soil

Quality control and assurance

- monitoring during execution
 - binder content
 - position of blade
 - blade rotation number
- quality assurance
 - core sampling
 - wet grab sampling

• qu test, needle penetration test

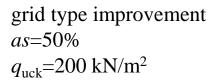
Performances of CDM improvements^{23, 2015}

River embankment unimproved ground

River embankment

improved ground

block type improvement as=100% $q_{uck}=100 \text{ kN/m}^2$


Road embankment

as=100% $q_{uck}=1,000 \text{ kN/m}^2$

block type improvement

Earthquake attack in 1995 earthquake

Liquefaction in 1964 earthquake

slope failure in 2007 earthquake

Tsunami attack in 2011 earthquake

Mass stabilization 2015 April 23, 2015

Concluding remarks

- brief explanation of shallow & mid depth mixing in Japan, purpose, machine, execution, quality control and assurance
- Cement mix techniques, shallow and mid depth, are essential in infrastructure development for mitigating disaster.

Mass stabilization 2015 April 23, 2015

カルカロドン・メガロ! 1081 E 10 C 8 mielenki Innostannei