

Dry Soil Mixing -Current US Practices

Dennis W. Boehm

Mass Stabilization 2015 – Lahti, Finland April 24, 2015

www.HaywardBaker.com

Presentation Outline

 \diamond QC

History of Dry Mixing

 USA Experience

 Dry Mixing Design/Applications

 Equipment and Tooling
 Case Histories

What is the experience in the USA with dry mixing?

- Woodrow Wilson Test embankment installed by Underpinning and Foundations/Skanska in mid 2000.
- IHNC test program by Underpinning and Foundations in 2003 for the COE – New Orleans district
- Other uses by UAF/Skanska on the I-4 project in Salt Lake City in 2004-2005
- Mixing done in upstate NY and Nebraska by Hayward Baker and UAF for COE and NBDOT -2006

US History with Deep Mixing continues to grow through various uses...

- 2003 Large scale dry mixing project performed for US1 in Florida
- 2006 following Katrina mixing in COE NOLA district continued to grow, some 7 jobs completed
- Regularly used in the Oil and Gas industry as well as still evaluated for use and compared to Wet mixing methods for COE Projects

THING

Presentation Outline

History of Dry Mixing
 USA Experience

Dry Mixing Design/Applications

XXXXXX

Equipment and Tooling
 Case Histories

> QC

What limitations in regards to soil strength should we consider before using Dry Mixing

- Shear strength of soil has to be low enough to allow mixing
- Binder requirement has to be in line with output
- Moisture content has to be high enough to allow complete hydration
- Compute $I_C \ge 0$ and $I_L > 1$

Binder Types and Dosage

♦ Lime Cement Lime-cement blends Slag-cement blends Typical dosage is 10% by weight of soil -50 to 200 kg/m³ Lab testing with site soil and binder

Mixing energy or Blade Rotation Number (BRN) a function of the tool type and installation speed

BRN (Blade Rotation Number)= Σ [(no. blades x rotation speed x penetration rate) + (no. blades x rotation speed x withdraw rate)] per 1 meter length of column

Example: Number of blades=4-8 Retrieval rate= 10-30mm/rev Rotation speed= 100-200 rpm

- Organic soils, peat = BRN>400
- Organic clay, Sandy clays = BRN>300
- Clay, Silty clay = BRN>200

Embankment built on soft soil/peat can be designed using block/column treatment

THINGSAFE

Application: Sheet Pile Stabilization – Working over Water

THINKSAFE

Presentation Outline

History of Dry Mixing

 USA Experience

 Dry Mixing Design/Applications

 Equipment and Tooling

INNNN A

Case Histories

> QC

Dry Soil Mixing installation techniques include Columns and Blocks to meet design

needs

HATWARD	8	

Mass Mixing to form blocks

Column Mixing to form panels or single columns

Dry Deep mixing methods are utilized in wetter softer soils or where REM is a problem

Dry binder materials are pneumatically injected into the soil during the dry mixing process

Bottom up method of soil mixing

There must be adequate soil moisture for the binders to fully hydrate often limiting design strengths

Mass Soil Mixing Movie

Dry Mixed Columns

Gestechnical Cunatruction

Mass Mixing Tool

Binder Handling

Keller – Shuttle	Type S1010	
Operating Weight:	20 tons	
Volume Storage Vessel:	10 m ³	
Operating Pressure Max:	10 bar	

Technical Data Sheet

Keller – Shuttle Type S1010 Status: Dec.07 Originator: Wolber/Kimmig Subject to technical modifications

Empty weight	± 12500 kg	
Total weight	± 25 000 kg	with binding agent 1000 kg/m3
Total weight	± 34 000 kg	with binding agent 1700 kg/m3
Climb angle fo	or empty machi	chine 30°
Climb angle fo	or fully machi	ne 20°

CAPACITY GROSS 2 x 7000 I NET 2 x 6300 I

Gestechnical Construction

Presentation Outline

History of Dry Mixing

 USA Experience

 Dry Mixing Design/Applications

 Equipment and Tooling

Case Histories

QC

Levee Stability enhancements made possible using Soil Mixing

17th Street Canal New Orleans

800 mm diameter soil mixed columns installed from a barge

Dry mass mixing is working in block cell arrangement working from platform for a Tank

Los Vientos

- Los Vientos I and II

 180 Wind turbines
 402 MW total capacity
 Both Built in 2012
- Rio Grande Valley

 Willacy County, TX
- Dry Mass Soil Mixing (DMSM)
 –26 foundation locations

Foundation Design

4\ (2 D)

224

Mass Stabilization Design

Mass Stabilization Construction

- 26 foundation sites
- Construction process
 Strip topsoil
 - -Pre-excavate 8.5 ft
 - -Perform DMSM
 - Outside excavation
 - Within excavation
 - -Grading
 - -Form and pour foundation

Foundation Construction

THINK

QAQC and Verification Testing

THINKSAFE

QAQC and Verification Testing

THINKSAFE

Presentation Outline

QC

History of Dry Mixing

 USA Experience

 Dry Mixing Design/Applications

 Equipment and Tooling
 Case Histories

How do you measure the quality of the Dry Mixed material,...CORE it

Core the columns and check continuity...destructive testing

THINCÓSAFE

HANMARD BAKER Georgefinited Conservation

Field control methods

Seatechnics Construction

10

Mass Mixing Grid Control

- Shows the real-time depth & position of the mixing tool along the length of the cell
- Grid sub-cells are drawn in red, yellow, or green to indicate when the target binder content or mixing time has been reached within each sub-cell
- Rig software also tracks the rig heading vs. cell center line & the tool distance from the center line to aid in proper positioning along the cell

		ZE	RO PTH	RECORD	G	REC MIX O	ord Ing N		RECO	PING	K	R
ate	Time		Cell Name		0	Projec	t Y (ftUS)	Project X	(ftUS)	Project Z (ftUS)	GPS Fix	
1/2/2014	2:22:	54 PM	1-75	- 1		159	11.988	-1443	34.93	-13.309	RT2	
Cell Type		Total Time	Time Rem	Mixing Details	Graphs	Inclinatio	n					
Zone 1	~	685 sec	215 sec			т	ool Locatio	n Details				
Grout Flow		Grout Volur	me				Position in	Cell:	3.93	Distance to	Center Line:	0.83
119 gpm Specific Gravity		1212 Cell Cement	gallons t Content	Display Mode	Binder Cont	ent V	Direction	n to Cente	er: Right	Headi	ng to Center:	-1.23
1.36 Grout Pressure		85.75 Total Binder	lbs/cy r Weight	99	8	23	0	0	0 ft			
39.5 psi Tool Depth		5041	lbs	lbs/cy	lbs/cy	lbs/cy	lbs/cy	lbs/cy	3.2 ft			
13.36 feet Feed Rate		Mixing Tool	Pressure	86 Ibs/cy	16 Ibs/cy	40 Ibs/cy	14 Ibs/cy	0 Ibs/cy	Y			
-20 ft/mir Left Drum RPM	n	263 Right Drum	psi RPM	74	33	96	36	0	6.3 ft			
60 Left Drum BRN		96 Right Drum	BRN	lbs/cy	lbs/cy	lbs/cy	lbs/cy	lbs/cy	9.5 ft			
78		125		168 lbs/cv	64 lbs/cv	134 lbs/cv	11 lbs/cv	0 Ibs/c)				
Pu	mp Spee	ed			A	ic cic y	i a a i a j		12.7 ft			
30	50	70		254 Ibs/cy	179 ibs/cy	216 lbs/cy	2 Ibs/cy	0 Ibs/cy	15.0.0			
20-	0	~90		327 Ibs/cy	117 lbs/cy	201 lbs/cy	0 Ibs/cy	0 Ibs/cv	/			
0		100							19 ft			-

- Binder and mixing time are proportionally assigned to subcells based on the position of the center of the tool
- For example, if the tool center is at the corner between 4 subcells each cell would receive 25% of the binder added

Mass Dry Mixing Report

- Profile grid shows binder distribution grid by depth and cell length
- Tool depth is tracked using elevation from rig GPS system
- System tracks binder content & time for each subcell within the design cell area

Mass Dry Mixing Report

- Time plot report
 - Tool Depth vs. Time
 - Binder Weight vs.
 Time
 - Binder Flow & Air
 Pressure vs. Time
 - Left & Right Tool
 RPM vs. Time
- Avg. Treatment
 Depth

THINKS

- Avg. Air Pressure
- Avg. Binder Content

Mass Dry Mixing Report

- Grid report showing cell divided into several sub cells
- Grid dimensions

 (rows & columns)
 are specified in rig
 software
- Grid is adjustable based on cell type for projects with multiple cell sizes

THINKSAFE

QA/QC – Expose it if you can

Temporary excavation pit Clay – UK (2005)

Exposed DDM columns for permanent slope stability in Uppsala – Sweden (2005)

DDM columns supporting a temporary excavation for the railway link between Gothenburg and Malmö – Sweden (2003)

This is the Last Slide Thank You!! *Questions*?

Dennis W. Boehm dwboehm@haywardbaker.com Hayward Baker www.haywardbaker.com 509 North Sam Houston Parkway/Houston, Texas 281-668-1870

