ARCADA II Kyläsaari, Helsinki, Finland Street and plot area construction

Key words: light weight structure utilization of surplus soils

General information	The bottom level of clay in the area is -15 to -30. The area was filled from the sea in
	the 1960s by filling the area with aggregate contained with an embankment.
	Subgrade filling failed and the big part of the aggregate filling was floating on top of
	the clay layer. The largest thickness of the "subgrade filling" is more than 20 m. In
	the vicinity of the filled area, there are mainly 2-5 m thick filling layers constructed
	directly on top of compressible soft layers of clay and gyttja. In order to curb the
	lateral movement, the thick layers of filling were lightened by digging away the orig-
	inal filling to the level of -5 and filling the pit with soft surplus clay which was subse-
	quently stabilized there. Also the lower excavations carried out in order to remove
	contaminated filling were filled with surplus clay which were stabilized afterwards.
	Surplus clay was transported from other construction sites.
Advantages of stabilization	The unit weight of the stabilized clay is considerably smaller than the unit weight of
	the aggregate filling submerged in the groundwater. The replacement of the aggre-
	gate with stabilized clay has allowed for considerable lightening of the structure and
	has decreased the lateral movement. In the same way, it was possible to utilize sur-
	plus soft clays which otherwise would have to be transported to soil landfill.
Project timetable	12/2010 - 08/2011 mass stabilization
Volumes and dimensions	The amount of the mass stabilized clay – approximately 32 000 m^3
Geology and stabilized mate-	The water content of the stabilized surplus clay $w \ge 80-90$ %. The unit weight for the
rial	water content in question $\gamma_w \le 15 \text{ kN/m}^3$ (required). Other requirements concerning
	stabilized clay: clean (environmental requirements) and no cobbles allowed.
Target strength of the stabi-	At the depth from ground surface to level -4 $\tau_{targed} \ge 40$ kPa and at level -4 to -5
lized material	$\tau_{targed} \ge 80 \text{ kPa}$
Binder(s)	Cement 100 kg/m ³
Laboratory and field tests	Index and stabilization tests performed in the laboratory, stabilization tests carried
	out with the use of various binder mixture combinations. Quality control soundings
	in the basins (column penetrometer) in various stages of the work. During sounding
	tests, the observed shear strength of mass mass stabilization was mainly 80-300 kPa.
	In two basins, the shear strength varied between 50-200 kPa.
Other	In the Kyläsaarenkuja street, steel pipe piles of large diameter were driven through
	the mass stabilized layer. Piling trough the stabilized layer succeeded well.
Long-term follow-up and	No long-term follow-up activities in the site
lessons learned	
Sources	Articles: NGM 2012, Wascon 2012, Rostock 2012, Arcada II, Report on the implemen-
	tation of mass stabilization 5.0.2011 Piomaa V. Niutanon

Stabilization contractor

A cross section of the embankment in Arcada II and Kyläsaarenkuja illustrating the method applied. The aggregate removed from the area was replaced with stabilized clay which constitute a light weight structure.

Contaminated aggregate filling made in the 1960's was dug out to the level -5. Ground water in the area is on the level of the sea which is next to the site. After removal of the aggregate, the excavation was filled with surplus clay.

Stabilization of the surplus soft clay placed in the pit. In the back, a loading embankment is constructed. This functions as a working platform for the stabilization equipment, and allows for the compaction of the stabilized soil layer during the curing time.

