CASE HAAGA SPORTS PARK

HAAGA SPORTS PARK Haaga, Helsinki, Finland Sports field and residential area subgrade reinforcement

Key words: Sports field and residential area, column stabilization, mass stabilization

General information	The peaty swamp area in Laajasuo, middle-Haaga was turned into sports field and
	residential area. The subgrade reinforcement was done with combination of mass
	and column stabilization.
Advantages of stabilization	Construction on very soft subsoil was enabled with mass stabilization without re-
	markable mass exchanges or pile slabs as a foundation structure.
Project timetable	2005-2007
Volumes and dimensions	Mass stabilization: 78 000 m ³ . Columns: total length 14 000 m, diameter 700 mm
Geology and stabilized mate-	The ground consists of four different soft layers: peat layer (2 – 3.5 m)
rial	clayey mud (0.3 – 1m), silty sand (0.2 – 0.6 m) and soft clay (0 – 5 m). Under these
	layers there are sand and moraine layers. The maximum depth of soft soils is approx-
	imately 11 m.
Target strength of the stabi-	Mass stabilization: The shear strength was 50 kPa. Column stabilization: The clay
lized material	layer underneath the peat and mud was column stabilised. The target shear strength
	of the columns was 100 kPa.
Binder(s)	Cement (CEM II / A-M (S-LL) 42,5 N) 120 kg/m ³ and 150 kg/m ³ is used as a binder in
	mass stabilization.
Laboratory and field tests	Quality control soundings were done by the contractor and the client to confirm the
	shear strength of the stabilised mass and homogeneity. The binder content of the
	mass was also monitored with laboratory samples and portable x-ray fluorescence
	device on site. Settlements were monitored with settlement plates and with flexible
	settlement tubes.
Other	The thickness of the compression embankment was 0.5 –1.5 m over the stabilised
	peat and the preloading was carried out at least 6 - 12 months before construction.
Long-term follow-up and	-
lessons learned	
Sources	ALLU Mass stabilization manual

Stabilization contractor

-

CASE HAAGA SPORTS PARK

The planned stabilized areas

Aerial picture from condition after construction of the Haaga sports park