## CASE PORT OF KOKKOLA

| PORT OF KOKKOLA  |
|------------------|
| Kokkola, Finland |
| Port expansion   |

Key words: Contaminated dredged sediments, port expansion

| General information           | Case Port of Kokkola was a pilot project which included the dredging and stabilization                   |
|-------------------------------|----------------------------------------------------------------------------------------------------------|
|                               | of contaminated sediments. The project was done in Silverstone (Hopeakivi) Port                          |
|                               | area, where a new quay will be built. The port is expanding to sea and the building of                   |
|                               | harbour areas demands filling of millions of cubic meters. With dredged sediments,                       |
|                               | the requirements for filling can be reached quite fast. The pilot was part of the                        |
|                               | SMOCS project.                                                                                           |
| Advantages of stabilization   | The contaminated sediments can be utilized in the port extension. The results from                       |
| J.                            | the dredging and stabilization will be used in future handling of the sediments from                     |
|                               | dredging of fairways. Stabilized masses fulfilled the requirements for construction of                   |
|                               | harbour areas. The obtained results will be exploited in the future expansion of the                     |
|                               | port.                                                                                                    |
| Project timetable             | Dredging and mass stabilization in 2011.                                                                 |
| Volumes and dimensions        | ≈ 12 500 m <sup>3</sup>                                                                                  |
| Geology and stabilized mate-  | The soil type of the dredging mass varied between silt - sandy silt – sand. Average                      |
| rial                          | index properties w=20 %, ρ = 2023 kg/m³, LoI = 0.7 %, pH=6.6                                             |
| Target strength of the stabi- | Shear strength ~50 kPa                                                                                   |
| lized material                |                                                                                                          |
| Binder(s)                     | Rapid cement 0-30 kg/m <sup>3</sup> , fly ash 100-200 kg/m <sup>3</sup>                                  |
| Laboratory and field tests    | Testing included geotechnical properties of stabilized material, strength, development                   |
|                               | of strength along time, water permeability and environmental suitability. During and                     |
|                               | after stabilisation quality control and quality assurance were conducted.                                |
| Other                         | The stabilization started with 30 kg/m <sup>3</sup> cement + 100 kg/m <sup>3</sup> fly ash. The obtained |
|                               | shear strength was at some points very high and therefore fly ash (without cement)                       |
|                               | was used 150-200 kg/m <sup>3</sup> as such for the rest of the stabilization.                            |
| Long-term follow-up and       | Quality drillings after one year in 2012. The shear strength was clearly over the target                 |
| lessons learned               | value.                                                                                                   |
| Sources                       | Autiola, et al. (2012), Field test in Port of Kokkola, SMOCS (Sustainable Management                     |
|                               | of Contaminated Sediments), final report. Available:                                                     |
|                               | http://www.smocs.eu/guideline/kokkola.pdf; Forsman, J., Marjamäki, T., Jyrävä, H.,                       |
|                               | Lindroos, N. & Autiola, M. 2016. Applications of mass stabilization at Baltic Sea region.                |
|                               | 13th Baltic Geotechnical Conference, 2124.9.2016.                                                        |
| Stabilization contractor      | Biomaa Oy                                                                                                |





## CASE PORT OF KOKKOLA



Dredging and dumping areas

Ongoing mass stabilization

Test pit for technical quality control